Tag Archives: Gene

LC Sciences announced the availability of probe content miRBase 10.0 for their microRNA (miRNA) microarray customers

Taking advantage of its flexible µParaflo™ Chip Technology, Houston based LC Sciences today announced immediate availability of probe content miRBase 10.0 for their microRNA (miRNA) microarray customers. This announcement comes less than a week after Sanger Institute’s update of their sequence database for known miRNAs (miRBase) 1 to version 10.0 (http://microrna.sanger.ac.uk/sequences). As the jump in

version numbers from 9.2 to 10.0 suggests, this update marks a major milestone and features significant changes: 489 new hairpin sequences and 971 novel mature miR and miR* experimentally verified products have been added.

These numbers represent an increase of unique miRNA sequences by 42%. “This exciting increase in data means that researchers using pre-spotted glass arrays with probe content based on versions as recent as 9.1 are missing 49% of mouse, and more than 50% of human sequences, just to give two examples. The other important point is that these sequences are experimentally verified and publicly available data. Unlike with proprietary probe content the researcher has full access and control over the results.” said Chris Hebel, Director of Business Development at LC Sciences.

The importance of this update is emphasized by another aspect of the release: many human, mouse and rat mature miRNAs were renamed and the sequence boundaries changed to reflect the predominant forms identified in recent large-scale cloning studies. The public miRBase sequence database serves as the primary probe content for many commercially available miRNA profiling microarrays. Detection of miRNAs using a microarray offers the opportunity for genome-wide miRNA expression profiling by examining all known miRNA transcripts in a single experiment. However, the continued updating of the database can be problematic for researchers using pre-spotted glass slide arrays as the probe content of the arrays immediately goes out of date whenever a new miRBase version is released. Especially, in a rapidly evolving field as miRNA research it is important to scientists to have the most complete picture of miRNAs expressed in their experimental samples.

LC Sciences miRNA microarrays make use of a microfluidics on-chip synthesis platform, termed µParaFlo™, versus a traditional spotted array based on pre-synthesized oligonucleotides. This on-chip synthesis platform solves the issue of out of date microarrays because made-to-order microarrays can be produced, delivering the most up-to-date research tools to researchers.

In addition to providing much more uniform and reproducible features than a spotted array, on-chip synthesis permits the total customization of content on each individual microarray opening up additional applications such as the discovery of new miRNAs and other small non-coding RNAs.

About microRNA (miRNA)
miRNAs are small non-protein-coding RNA molecules that function as negative regulators of gene expression by base pairing with specific mRNAs. This either inhibits translation or promotes mRNA degradation. About miRBase – The miRBase sequence database is a comprehensive database of miRNA sequence data, annotation, and predicted gene targets and is the primary public repository for these data. Release 10.0 of the database contains 5071 entries representing hairpin precursor miRNAs, expressing 4922 maturemiRNA products, in primates, rodents, birds, fish, worms, flies, plants and viruses (miRBase release summary). miRBase also provides a gene-naming service for assigning official miRNA names to novel miRNAs before they are published. It is freely available to all at http://microrna.sanger.ac.uk/.

About LC Sciences
LC Sciences offers specialty microarray services for nucleic acid/protein profiling and functional analysis, biomarker-discovery, and novel drug screening. Our array service products are based on Atactic Technologies’ µParaflo™ platform technologies that encompass advanced digital chemical synthesis, pico-liter scale biochemical assays, and microfluidic reaction devices containing high density individual 3D chambers.


Via EPR Network
More Biotech press releases

CodeLink business assets have been transferred under the agreement between Applied Microarrays and GE Healthcare

Applied Microarrays, Inc announced today the completion of Applied Microarrays’ purchase of certain assets of GE Healthcare’s CodeLink™ Gene Expression Bioarray System. Under the terms of the agreement, Applied Microarrays, Inc acquires certain equipment, inventory, licenses and assigned contracts associated with the CodeLink platform. Financial terms were not disclosed.

The transaction enables Applied Microarrays to provide CodeLink users with continued and uninterrupted access to the industry-leading gene expression platform as Applied Microarrays, Inc continues to develop, market, distribute, sell, and support the existing CodeLink catalogue of whole genome expression arrays, Codelink custom arrays and Codelink inside arrays.

Alastair Malcolm, president and chief executive officer of Applied Microarrays, said, “We’re pleased to now have a unique opportunity to launch our company with a full range of microarray design, development, and manufacturing competencies and at the same time ensure a seamless transition for customers.

Eric Roman, General Manager Genomic Sciences, GE Healthcare, said, “There has been strong demand from CodeLink customers to keep these products in the marketplace. We’re delighted to have found a way for our customers to continue working with one of the best gene expression platforms available.”

“The CodeLink platform is customer-proven over several years, notably demonstrating world-class technical performance in the FDA-led MicroArray Quality Control project,” Malcolm said. Applied Microarrays is immediately opening the CodeLink platform to the microarray community for new applications development, offering customers the opportunity to place their unique custom array content on to a robust, proven platform which can be manufactured in high volume.

Applied Microarrays aims to be a leading contract manufacturer of microarrays, of any type, for any customer, with no limitations on substrate material or spotted fluid. “We are fortunate in this regard to have acquired an intact high-capacity microarray spotting facility, employing Six Sigma techniques since its inception to produce leadership quality products,” Malcolm said.

About Applied Microarrays, Inc.
Applied Microarrays is a new company headquartered in Tempe, Arizona. Using the microarray assets acquired from GE, and staffed with experts who developed the CodeLink platform and manufacturing capabilities, the company will specialize in contract development and manufacturing of custom microarrays of all types. The company will additionally continue to offer the CodeLink family of gene expression arrays, and customer-specified subsets of that content on multi-array formats. Our vision is to be the microarray partner of choice for focused “omics” research, and the leading high-volume contract manufacturer for research and diagnostic arrays.

About GE Healthcare
GE Healthcare provides transformational medical technologies and services that are shaping a new age of patient care. GE Healthcare’s expertise in medical imaging and information technologies, medical diagnostics, patient monitoring systems, performance improvement, drug discovery, and biopharmaceutical manufacturing technologies is helping clinicians around the world re-imagine new ways to predict, diagnose, inform, treat and monitor disease, so patients can live their lives to the fullest.

GE Healthcare’s broad range of products and services enable healthcare providers to better diagnose and treat cancer, heart disease, neurological diseases and other conditions earlier. GE Healthcare’s vision for the future is to enable a new “early health” model of care focused on earlier diagnosis, pre-symptomatic disease detection and disease prevention. Headquartered in the United Kingdom, GE Healthcare is a $17 billion unit of General Electric Company (NYSE: GE). Worldwide, GE Healthcare employs more than 46,000 people committed to serving healthcare professionals and their patients in more than 100 countries.

Via EPR Network
More Biotech press releases

Welcome to EPR Biotech News

EPR Biotech News is a new blog, part of EPR Network, that is going to be focused on and will be covering the biotech news and stories from press releases published on EPR Network.

EPR Network (EPR stands for express press release) is one of the nation’s largest press release distribution networks on Web. The EPR’s nationwide network includes 12 State based PR sites, one major PR forum and a number of industry specific PR blogs and what started as a hobby on Internet years ago turned out to be a rapidly growing business today. EPR Network is also known as one of the most trusted (human optimized, published, edited and monitored, spam/scam/low quality PR content free) PR sites on the web with more than 10,000 company and individual press releases distributed per month. EPR Network is putting your press releases on top of all major search engines’ results and is reaching thousands of individuals, companies, PR specialists, media professionals, bloggers and journalists every day.

EPR Network has thousands of clients around the world including global 500 corporations like Hilton Hotels, Barclays Bank, AXA Insurance, Tesco UK, eBay/Skype, Emirates, just to name a few. The network’s PR web sites are currently reaching from 150,000 to sometimes 500,000 unique visitors per month while our viral reach could possibly go to as much as 1M people per month through our presence across various social media sites. EPR Network was established in 2004 and as of May 2008 it had more than 800,000 press releases (pages) published on its network.

If you have a press release to be distributed, you can do it over here: press release distribution