Is it a Moment or an Abuse: the Boom of iPSCs Research after 2012 Medicine Nobel Prize

On Creative Biomart website, we can read a report about the 2012 Nobel Prize in Physiology or Medicine regarding the two winners. They bring hope for organ or tissue repair for human or even for rejuvenation, i.e. for long life through induced pluripotent stem cells (iPSCs).

Since the first appearance in 2006, iPSCs became the hit and focus. But there are still lots of unknowns waiting for us before achieving the ideal status. Thus, numerous scientists, researchers and businessmen are struggling and investing for that goal. Here are some examples:

On Dec. 5, 2012, Roche (SIX: RO, ROG; OTCQX: RHHBY) and the Innovative Medicines Initiative (IMI) announced today the launch of StemBANCC, a new academic–industry partnership that unites ten pharmaceutical companies and 23 academic institutions. Initiated and coordinated by Roche and managed by Oxford University, StemBANCC aims to use human induced pluripotent stem cells as research tools for drug discovery with the goal of using this ground-breaking new technology to develop human disease models and enhance drug development.

On Oct. 29, 2012, on the PANS Journal there is an article about Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells.

On Oct. 4, 2012, on Cell Stem Cell, there is a report with the title be Genome Sequencing of Mouse Induced Pluripotent Stem Cells Reveals Retroelement Stability and Infrequent DNA Rearrangement during Reprogramming.

On Jan. 30, 2012, on the PANS Journal, there is a report about modeling hepatitis C virus infection using human induced pluripotent stem cells, which make the individual and tailor therapy further.

Above are only a small part of such studies. People still wonder does it is the moment or an abuse on the iPSCs research. When someone reviewed one of the winners, Shinya Yamanaka, about his opinion on the challenge of iPSCs research, he said, “I have two research directions, the first is to establish human iPSCs bank that comply with clinical application standards. The second is to study the cell mechanism of iPSCs regenerating. And I think the current threat is still to be the safety problem as good research respects both scientific and ethical standards.”

But no one deny the great potential of iPSCs.

Via EPR Network
More Biotech press releases

Sprint Bioscience Strengthens Its Cancer Metabolism Portfolio

Sprint Bioscience, a Swedish company developing oncology therapeutics targeting cancer metabolism, announced today that it has raised money to strengthen its drug discovery portfolio.

The investment by Första Entreprenörsfonden and Almi Invest will enable the company to continue to build a pipeline of drug discovery projects within cancer metabolism.

“We are investing in Sprint Bioscience because we consider their entrepreneurial drive and their particular skills in drug development to be key success factors for the changing environment of the future pharmaceutical industry. Sprint Bioscience’s business strategy involves out-licensing or collaborating at an early stage of drug discovery to ensure that projects are developed with a focus on current and relevant market needs,” says Rune Nordlander, partner at Första Entreprenörsfonden.

Sprint Bioscience is a company founded by experienced drug hunters with an ambition to improve the drug discovery process. “We believe in small organisations with effective working procedures and collaborations throughout the sector,” says the company’s CEO and co-founder, Dr. Anders Åberg.

“Sprint Bioscience has developed an efficient, fragment-based drug discovery (FBDD) platform that can take parallel projects from initial idea to active molecules tested in cell-based systems in a very short time” Anders Åberg continues. Our goal is to align the early phase in the laboratory with pharmaceutical companies’ needs.

Targeting the metabolism in tumours provides exciting opportunities to develop drug therapies with novel mechanisms of action. This could be used to overcome the resistance that many cancer cells develop to current treatments.

Via EPR Network
More Biotech press releases

Sichuan Agricultural University and LC Sciences Uncover the Epigenetics of Obesity

In a new study published online in Nature Communications, researchers from Sichuan Agricultural University and LC Sciences report the miRNAome in porcine adipose and muscle tissues. The report provides a valuable epigenomic source for obesity prediction and prevention and furthers the development of pig as a model organism for human obesity research1.

Scientists now know that the genetic code alone isn’t responsible for adult phenotype or even the offspring of these adults. Epigenetics refers to changes in gene expression affecting phenotype that don’t involve changes to the DNA nucleotide sequence itself, and yet are heritable. DNA methylation, histone modification and microRNA (miRNA) expression are examples of epigenetic mechanisms that have recently been identified as important regulators of gene expression in many biological systems.

Obesity is a huge problem worldwide. Recently, the World Health Organization reported that obesity levels doubled in every region of the world between 1980 and 2008, spurring rates of non-communicable diseases such as diabetes and cancer that now account for almost two out of three deaths globally. It has become evident that epigenetic factors, such as D N A methylation and miRNA expression, have essential roles in obesity development.

Now, a team led by Researchers at the Institute of Animal Genetics and Breeding, Sichuan Agricultural University, China has used a pig model to investigate the systematic association between epigenetic regulators and obesity. Pigs are an excellent model system to study obesity due to their similar physiology to ours including: metabolic features, cardiovascular systems, and propor­tional organ sizes . The researchers generated a genome-wide D N A methylation map as well as miRNA expression and gene expression maps for adipose and muscle tissues from three pig breeds living within comparable environments but displaying distinct fat levels.

The miRNA expression portion of this project was supported by team members from LC Sciences’ Hangzhou, China lab. LC Sciences is a specialist in miRNA sequencing and expression profiling and has previously collaborated with the group from Sichuan Agricultural University. In 2010 they performed a comprehensive search for porcine miRNAs that extended the repertoire of pig miRNAome to 777 unique miRNAs and enabled an atlas of miRNA regulation functions and networks to be constructed which has laid the groundwork for future miRNA studies in pig models2. Additional collaborations with the group include investigations of miRNA expression in porcine gonads3 and human breast milk4. LC Sciences has worked with other agricultural groups in China as well, including: Huazhong5, Yangzhou & Nanjing6 Universities on their porcine miRNA studies.

In the current study, numerous miRNAs having known or potential roles in obesity were identified. Additionally, the researchers found a differentially methylated region in males compared with females. This region is located in the promoter of a miRNA cluster that includes adjacent miR-99b, let-7e and miR-125a. Although no previous evidence exists for a direct relationship of these three miRNAs to obesity, the key functions and targets of these miRNAs potentially contribute to sexual differences in obesity development.

Dr. Qiulei Lang, Head of LC Sciences operations in Asia commented, ”miRNA has been a focus of LC Sciences’ since 2005. Back then we realized its importance and so have tailored our capabilities to support agricultural customers worldwide in their miRNA research. A proprietary RNA-Seq data analysis pipeline that was developed by LC Sciences enabled us to make sense of the tremendous amount of small RNA sequencing data that we generated in this study.”

That data analysis shows global epigenetic similarity and difference among breeds, sexes and anatomic locations. The epigenetically regulated regions in promoters are highly associated with obesity development via expression repression of both known obesity-related genes and novel genes. This comprehensive map provides a solid basis for exploring epigenetic mechanisms of obesity.

Dr. Mingzhou Li from Sichuan Agricultural University , said, “The domestic pig is of enormous agricultural significance and provides valuable models for human obesity research. Recently, epige­netic factors, especially DNA methylation and miRNA regulation have gained a greater appreciation as an alternative perspective on the aetiology of complex diseases. Although little is known about the transcription start site of primary miRNA transcripts, our results suggested that DNA methylation in 5′ upstream of stem-loop precursor could have a role in transcriptional silencing of mature miRNA. ”

In the modern industry, pigs have undergone strong genetic selection in the relatively inbred commercial lines for lean meat production, or in some cases, for adipose production, which has led to remarkable phenotypic changes and genetic adaptation, making these breed lines a perfect model for comparative studies.

Principal Investigator Ruiqiang Li from Peking University, said, “This work will serve as a valuable resource for future functional validation, promoting further development of pig as a model organism for human obesity research, as well as maximizing the economic benefits in producing high quality pork.”

About Sichuan Agricultural University – Sichuan Agricultural University (S IC AU) is a university located in Ya’an city, Sichuan province, China and part of the “Project 211”, specialized in biotechnology and agricultural sciences, and as well as offering degrees in physical science, engineering, economics, management, veterinary medicine, liberal arts, pedagogy and law. For more information, please visit www.sicau.edu.cn.

About LC Sciences – LC Sciences is a leader in miRNA discovery and profiling offering flexible services and delivering high quality results based on our innovative µParaflo® custom microarray platform and the latest next-gen sequencing technologies. We have developed complementary bioinformatics tools necessary for extracting biological and functional information from large microRNA and miRNAome data sets. LC Sciences provides microfluidic made-to-order microarrays and delivers the most up-to-date genomics application tools for advancement in basic science and applied biomedical fields. For more information, please visit www.lcsciences.com.

    1. Li, M. et al. (2012) An atlas of DNA methylomes in porcine adipose and muscle tissues. Nat Commun [Epub ahead of print]. [ abstract ]
    2. Li, M. et al. (2010) MicroRNAome of porcine pre- and postnatal development. PLoS One 5, e11541. [ article ]
    3. Li, M. et al. (201 1 ) Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing. Int J Biol Sci, 7(7), 1045-1055. [ abstract ]
    4. Zhou, Q. et al. (2012) Immune-related Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci, 8(1), 118-123. [ abstract ]
    5. Luo L. et al. (2010) Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One 5(8), e11744. [ article ]
    6. Zhou B, Liu HL, Shi FX, Wang JY. (2010) MicroRNA expression profiles of porcine skeletal muscle. Anim Genet 41(5), 499-508. [ abstract ]

Via EPR Network
More Biotech press releases

Advinus, SignalChem Start The Multi-Year, Multi-Target Collaboration On New Anti-Cancer Drugs

Advinus Therapeutics, a research-based pharmaceutical development company promoted by the TATA Group, and SignalChem Pharmaceuticals, a British Columbia-based drug discovery company, have started working on 15 programs based on SignalChem’s proprietary Kinase platform for targeted therapies in oncology. Each program is being developed with corresponding diagnostics and tracers for patient selection and biomarkers for follow up offering the right treatment to the right patient at the right time. The companies have received a very high level of interest from pharma companies to license and collaborate on the programs and therefore see a rapid progression to the clinic.

Dr. Jasbinder Sanghera, CEO of SignalChem said – “This is a path-breaking partnership that leverages SignalChem’s extensive biology and kinase expertise and Advinus’s end-to-end capabilities of medicinal chemistry, lead optimization, preclinical development and early-clinical development capabilities to rapidly and efficiently advance new anti-cancer drug candidates into human clinical trials.”Dr. Rashmi Barbhaiya, CEO and MD of Advinus said– “This collaboration is an exemplary model of polycentric and globally networked innovation for enhancing probability of success, reducing timelines, and focusing on cost-effective partnerships to bring innovative medicines to the market. This collaboration would also leverage leading edge biomedical research of British Columbia research institutions and Advinus’s capabilities and infrastructure to translate biomedical research discoveries into potential life saving drugs.”

The collaboration was announced by B.C. Premier Christy Clark during her visit to India who said – “This is what our Jobs Trade Mission is all about – helping local companies make connections that will allow them to do business in India. We have an innovative technology and life sciences sector in B.C., which has a lot to offer India to support its economic growth. The partnership between Advinus and SignalChem will benefit people around the world.”

Via EPR Network
More Biotech press releases

CYTOO Raises 10 M$ (7M€) in Series C Round

CYTOO SA, a company that specializes in cell-based assays, is pleased to announce the closing of a series C funding round of USD 10M (EUR 7M). New investors, Sham and Entrepreneurs Fund (EF), led the round. Existing investors AURIGA Partners and Jacques Lewiner, co-founder and president of the supervisory board at CYTOO, also participated.

CYTOO will use the financing to fully exploit its fast growing business within the global market of cellbased assays and screening, and bring the company up to profitability. Having the potential to lead the next innovation wave in cell-based drug discovery and in vitro toxicology, CYTOO is already on the radar screen of several key industrial actors.

“We are very excited about joining CYTOO as it enters a new phase in its development,” says Olivier Szymkowiak, Chief Investment Officer at Sham. “There is an exceptional opportunity for CYTOO to revolutionize the cell culture for low and high throughput applications,” added Maciek Drozdz, Investment Manager at EF and future Supervisory Board member.

Leveraging its exclusive technology of adhesive micropatterning, CYTOO’s products and services bring robustness, sensitivity and powerful quantification to cell-based assays, high content analysis and cell screening for the life science research market.

CYTOO holds an exclusive worldwide license from the Institut Curie and the CNRS (The French national scientific research center) for the adhesive micropattern patent portfolio, as well as license agreements with Harvard University (USA) and CEA, the largest government-funded technological research organization in France.

“This funding represents a strong achievement in the young history of CYTOO: the company has now the financial means for turning its technological advantage into a commercial success. A shift that the company has already initiated with the commitment of existing investors and our support through the expertise of Jacques Mallet, partner at Auriga Partners” added Franck Lescure, partner at Auriga Partners and member of the supervisory board at CYTOO.

François Chatelain, CEO of CYTOO, commented: “I am excited to lead the company and thrilled to close our series C financing round with a renowned international venture capital investors syndicate. We are welcoming Entrepreneurs Fund and Sham who bring their high level experience in building up successful biotech and medtech companies, we are also pleased with the continued commitment of our historical investors. Together we are looking to move our business and technology onto the next level of growth.”

CYTOO was advised for its capital raising by Silver Ocean Ventures’ Managing Partner Dr John Tchelingerian.

Via EPR Network
More Biotech press releases

GenQual Announces Initial Closing Of Its First Preferred Equity Funding Round

GenQual is pleased to announce initial closing of its first preferred equity round. Financial terms were not disclosed. This inaugural funding round allows GenQual to pursue proof-of-principle testing for its companion diagnostic approach for IL-6 mAb and other JAK/STAT inhibitors for autoimmune diseases and oncology indications. GenQual aims to prospectively identify responders for clinical-stage therapeutics to improve drug trial response rates and improve chances for drug approval. The round remains open for further funding.

GenQual Founder and CEO Jonathan Mirich said, “This funding round allows GenQual to pursue its business development goals to deliver companion diagnostics for very expensive IL-6 monoclonal antibody treatment for autoimmune disease, chiefly rheumatoid arthritis, as well as certain oncology indications. It allows us to extend collaborative agreements for proof-of-principle testing. We are very excited about the possibilities in this space.”

About GenQual
GenQual develops proprietary biomarker diagnostics for autoimmune and oncology indications. Our personalized medicine products are designed to facilitate early disease detection and diagnosis, and to improve treatment approaches at the molecular level. GenQual is a privately-held corporation based in the Seattle area.

Via EPR Network
More Biotech press releases

Michigan Institute of Urology, P. C. to Perform Clinical Trial Using Cellay, Inc’s Same Day OligoFISH® Probes for Prostate Cancer

St. Clair Shores, Michigan and Cambridge, Massachusetts – Michigan Institute of Urology, P. C. (MIU) and Cellay, Inc. today announced that MIU will exclusively perform a clinical trial for prostate cancer using Cellay’s Same Day OligoFISH® probe panel. Data from this trial will be included in Cellay’s premarket approval (PMA) application for submission to the U.S. Food and Drug Administration. This novel, non-invasive screening test is designed to detect chromosomal abnormalities in prostate cells obtained in a urine sample after a digital rectal exam. This investigational use test uses fluorescence in situ hybridization (FISH) technology to detect chromosome gains and losses which have been associated with prostate cancer.

Prostate cancer is the most common cancer in males in the United States, and there are approximately 200,000 new cases diagnosed annually and 38,000 deaths per year. However, due to inaccuracies of the current screening method, the PSA blood test, more than 600,000 invasive biopsies are performed annually. The ability to differentiate non-aggressive from aggressive, metast atic prostate cancers has been a continuous clinical and diagnostic challenge. Cellay expects that the clinical trial will demonstrate that its rapid non-invasive, Same Day OligoFISH® panels will improve diagnosis, prognosis, and treatment using a cost effective, patient friendly assay.

Alphonse M. Santino, M.D., CEO and a Founder of MIU, noted, “MIU is pleased to be the exclusive clinical trial site for Cellay’s Same Day OligoFISH® probe panels for prostate cancer for its PMA submittal. Our relationship with Cellay reinforces our commitment to the people of Michigan to provide the most effective diagnosis and treatment for urological disorders and disease. This is an important relationship for us and our community, since African-Americans are 3.5 times more likely to develop prostate cancer than the rest of the male population. Moreover, this group presents with the aggressive type of prostate cancer at an earlier age with higher rates of mortality.”

“Cellay appreciates that MIU has committed to serve as exclusive site for the clinical trial of our Same Day OligoFISH® probe panels for prostate cancer. MIU’s physicians’ group is recognized as one of the nation’s premier urology practices and sets the standard for diagnosis and treatment of urologic disorders. Cellay welcomes MIU’s support and participation in this novel clinical trial,” said Ed O’Lear, President & CEO of Cellay.

About Michigan Institute of Urology
As one of the oldest and largest sub-specialty Urology practices in Michigan, MIU is dedicated to providing its patients the most up to date, state of the art urologic care. Its specialists have joined MIU from the most respected research universities and hospitals in the United States.

About Cellay
Cellay is a privately held, manufacturer of Same Day OligoFISH® probes for high complexity, physician owned laboratories, which contract with Cellay to manufacture and supply individual probes or multiple probes of the laboratories’ choice pursuant to FDA and Clinical Laboratory Improvement Amendments (CLIA) regulations. Cellay is registered with the FDA.

About FISH
FISH is an established cytogenetic technique that is used to detect and localize the presence or absence of specific DNA sequences on chromosomes. FISH uses fluorescent probes that bind to only those parts of the chromosome with which they show a high degree of sequence complementarity. Same Day OligoFISH® probes were introduced in 2007 and hybridize extremely fast with much higher analytical sensitivity and penetrability in cells and tissues than traditional probes.

Via EPR Network
More Biotech press releases

Advanced Liquid Logic Licenses Patents, Creates Collaboration With CEA-Leti

Advanced Liquid Logic announced today that it has signed a license and collaboration agreement with the French research institute CEA-Leti. The agreement provides Advanced Liquid Logic with worldwide exclusive access to CEA’s portfolio of patents related to digital microfluidics.

Advanced Liquid Logic co-founder and Dr. Michael Pollack said, “This agreement puts our company in a clearly dominant position with respect to the intellectual property surrounding digital microfluidics.” Co-founder Dr. Vamsee Pamula added, “the accompanying collaboration with a very active and highly competent group of researchers will provide us with key technical resources to help address both today’s and tomorrow’s technology challenges.” Advanced Liquid Logic has set up a subsidiary company in Grenoble, France to help manage the collaboration and to provide an initial position to address market opportunities in Europe. CEA-Leti employee Dr. Cyril Delattre will join the company and manage Advanced Liquid Logic’s French subsidiary.

“The combination of Advanced Liquid Logic’s intellectual property position and their readiness for market made them the ideal partner,” said Dr. Laurent Malier, CEO Leti. “We expect that our complementary skills, expertise and intellectual property will be very useful going forward. This partnership with Advanced Liquid Logic offers an industrial solution that will help us develop applications bases on microfluidics for many sectors”.

Advanced Liquid Logic previously acquired intellectual property from Nanolytics and Core Microsolutions. The company now owns or controls over 45 issued patents related to their proprietary, electrowetting-based digital microfluidic technology.

About Advanced Liquid Logic
Advanced Liquid Logic, headquartered in Research Triangle Park, North Carolina, is commercializing its proprietary “Digital Microfluidics” technology in a spectrum of life sciences and clinical diagnostics applications. Digital microfluidics enables precise and flexible manipulation of microdroplets using electrical fields and therefore avoids the need for pumps, valves or microchannels required by competing technologies. For more information please visit http://www.liquid-logic.com/

About CEA-Leti
CEA is a French research and technology organization, with activities in four main areas: energy, information technologies, healthcare technologies and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. CEA-Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC campus, CEA-Leti operates 8,000-m² state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,400 employees, CEA-Leti trains more than 190 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, CEA-Leti puts a strong emphasis on intellectual property and owns more than 1,700 patent families.
Visit www.leti.fr.

Via EPR Network
More Biotech press releases

Enabling microRNA Discoveries – 250th Peer-Reviewed Publication Made Possible By µparaflo Custom Microarray Technology

LC Sciences, a life sciences company leading the development of innovative microRNA (miRNA) analysis and discovery technologies, announced today the publication of over 250 peer-reviewed studies using the company’s microarray service for analyzing miRNA expression profiles. These studies, by leading researchers in the field, represent significant steps toward realizing these small regulatory RNA’s potential as biomarkers and therapeutic targets.

MiRNAs have proven to be an extremely important part of the gene expression regulation mechanism of a wide variety of cellular processes. This is evident in the amount of relevant findings by LC Sciences’ customers being translated into published reports and the diverse range of study areas that these publications encompass: cancer research, neuroscience, cardiovascular research, reproductive biology, plant science, microbiology, immunology and stem cell research. LC Sciences’ miRNA profiling service, powered by its µParaflo® custom microarray technology, provides quick, reliable, fully analyzed datasets enabling researchers to immediately move forward with groundbreaking research.

The miRNA field is still nascent, and it is advancing rapidly. The race to discovery has produced a continuous stream of new miRNA sequences as well as routine revisions of inaccurate or incomplete sequences. This fluidity has caused many microarrays with static content to fall away and has fueled reports of the wholesale replacement of microarrays by new methods such as RNA-Seq. But the nimble, customizable format of the µParaflo® array has given it staying power, not only by enabling it to keep current with all known miRNAs, but also by making use of data generated by RNA-Seq. These custom arrays have benefited from RNA-sequencing generating novel content that other arrays are unable to capture and take advantage of.

The 250th study, entitled “Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti.” appeared in the May 31st issue of PNAS and was one of a group of articles published recently by LC Sciences’ customers describing microarray expression analysis of miRNAs recently discovered through RNA Sequencing.

Researchers at the University of Queensland, Australia studied the underlying mechanisms of host manipulation by a widespread endosymbiont. Using microarrays, they show that the miRNA profile of the mosquito, Aedes aegypti, is significantly altered by a life-shortening strain of W. pipientis bacteria. This is extremely important work as introduction of Wolbachia into mosquitoes has been proposed as a method for malaria control. They found that a host miRNA (aae-miR-2940) is induced after W. pipientis infection in both mosquitoes and cell lines.

This study illustrates the versatility of µParaflo® from a couple of perspectives. First, mosquito, an important though non-model species was the target of interest here and mosquito arrays, as well as arrays from any of the 153 species listed in the miRBase public sequence database, are readily available from LC Sciences. Second, custom content (novel miRNA sequences from an earlier sequencing study on the same species) was quickly integrated into the content of the insect array providing an even richer expression dataset. Though all the previously described, known insect miRNAs were also present on the arrays, several custom sequences were significantly differentially expressed in infected mosquitoes and a custom sequence turned out to be one that became a focus of the investigation. Dr. Sassan Asgari, lead researcher for the study, commented that microarrays “…provided an affordable approach to the study of differential expression of small RNAs and miRNAs in particular.”

Via EPR Network
More Biotech press releases

Investor Stem Cell Launches Online Discussion Community Dedicated To Stem Cell Investors: (OTC-ACTC) (NASDAQ-GERN) (AMEX-BTX) (NASDAQ:ATHX)

Investor Stem Cell (http://www.investorstemcell.com) is dedicated to bringing investors and stakeholders together in thoughtful discussion to educate and publicize the incredible medical advancements taking place in the regenerative medicine sector. Scientists are using stem cells both (hESC) and (iPSC) in hopes of easing the suffering of hundreds of millions of people world wide.

Our society is on the verge of a quantum leap moment in time thanks to regenerative medicine.

Regenerative medicine and Stem Cell research:

Utter those words at your next dinner party or casual gathering of friends and family. You will receive a concoction of half-truth’s and out right fallacy responses. Stem Cell research conjures images of futuristic Star–Trek like preservation chambers, human looking ears protruding oddly from the backs of mice, or worse yet an image of a late term fetus. Nothing could be farther from the truth when entering the reality of Regenerative medicine.

Never before has this area of research been more exciting and promising than right now. There is a medical revolution brewing, and like any revolution, there are those who want to suppress this uprising for continued personal and ideological gains. If we were to take all the major advances in the past 500 years of human medical history and multiply its effect by 10 fold it still would not compare to the paradigm shift in health care delivery that the world may witness in this decade using stem cells. Imagine that an $800,000 heart transplant is no longer needed and that instead the same money spent on one patient can now be stretched out to treat 20 patients who are needing a heart transplant. Is this what Regenerative medicine has in the offing? Only time will tell. Our healthcare system could very well be on the verge of a quantum leap moment thanks to regenerative medicine.

The Food and Drug Administration (FDA) authorized 3 trials using human embryonic stem cells (hESC) in late 2010. Validation of hESC research efforts and the culmination of billions spent on research are coming to fruition. FDA validation for the treatments of spinal cord injury and age related macular degeneration is expected in 2011. It may be the shot heard around the world event sometime in late Q-4 2011 for the Regenerative medicine sector.

Find out more at http://www.investorstemcell.com, where investing is much more than charts and numbers.

Via EPR Network
More Biotech press releases

MicroTissues, Inc. Announces New Product Launch for the 3D Petri Dish™

MicroTissues, Inc. announced today the launch of its 3D Petri Dish™ line of products. The 3D Petri Dish™ is a new tool for the world wide industry of life sciences research and drug discovery. Invented at Brown University, the 3D Petri Dish™ grows living human cells in three dimensions (3D) where they replicate the function of natural tissues and organs. There are important applications for these human 3D microtissues in cancer and stem cell research as well as toxicity testing, drug discovery and cell therapy.

“The scientific community has recognized the need for a reliable 3D cell culture technology that accurately produces natural cell-to-cell interactions and is easy to use” said Brian Morgan, Marketing Manager of MicroTissues, Inc. “Not only does our 3D Petri Dish™ line of products create 3D microtissues without artificial scaffolds, the microtissues are uniform in size, easy to harvest and accessible to the standard biochemical and microscopy methods that cutting edge labs demand. No other 3D cell product has all these technical advantages. And, we have the only reusable product.”

MicroTissues, Inc offers eight products that are precision micro-molds used to cast 3D Petri Dishes™ that fit in standard multi-well plates. The micro-molds are autoclavable and reusable. In a single pippetting step, the 3D Petri Dish™ forms hundreds of spheroids (hepatospheres, cardiospheres, mammospheres, neurospheres, and embryoid bodies), and microtissues with more complex shapes and geometries. Over thirty different cell types, including primary human cells, have been shown to form 3D microtissues in the 3D Petri Dish™.

MicroTissues, Inc. a privately held company with an exclusive worldwide license to US and international patent applications on the 3D Petri Dish™, is advancing technologies and applications of 3D cell culture.

Via EPR Network
More Biotech press releases

MicroTissues, Inc.’s 3D Petri Dish™ Is Helping to Reduce Animal Use in Research

MicroTissues, Inc. announced today that its 3D Petri Dish™ is targeted towards helping to reduce the numbers of animals used in research. The 3D Petri Dish™ is a new tool for the world wide industry of life sciences research and drug discovery that grows living cells in three dimensions (3D). These 3D microtissues replicate the function of natural tissues and organs better than conventional 2D methods and are increasingly being used in toxicity testing of new drugs and cosmetics.

“Worldwide, efforts are underway to reduce the use of animals in research and we’re excited to be offering a new technology for toxicity testing” said Brian Morgan, Marketing Manager of MicroTissues, Inc. “The 3D Petri Dish™ is a reliable 3D cell culture technology that accurately produces natural cell-to-cell interactions and is easy to use. And, it forms 3D microtissues from human cells, so toxicity testing data is more relevant.”

Effective 2009, the European Union banned the use of animal testing for cosmetic products and many believe the trend to reduce the use of animals in research will continue worldwide. MicroTissues, Inc. is helping to address this issue by offering eight products that are precision micro-molds used to cast 3D Petri Dishes™ that fit in standard multi-well plates. The 3D Petri Dish™ forms hundreds of multi-cellular 3D spheroids from cells useful for toxicity testing including hepatospheres, cardiospheres, mammospheres, neurospheres, and embryoid bodies. The 3D Petri Dish™ technology also forms microtissues with complex shapes having geometries that mimic natural organs. Over thirty different cell types, including primary human cells, have been shown to form 3D microtissues in the 3D Petri Dish™.

MicroTissues, Inc. a privately held company with an exclusive worldwide license to US and international patent applications on the 3D Petri Dish™, is advancing technologies and applications of 3D cell culture. The company’s products stand above the rest because they are designed to create more natural and more reliable 3D cell culture environments based on cell-to-cell interactions in convenient and consistent formats that generate high content information. The company’s lead line of products, the 3D Petri Dish™, is serving the needs of researchers in a wide range of areas including cancer research, stem cell biology, toxicity testing, developmental biology, drug discovery, regenerative medicine and tissue engineering. In addition to products for basic research, MicroTissues, Inc. is using its platform technology to pursue applications in drug discovery and cell therapy. For more information, please visit www.microtissues.com.

Via EPR Network
More Biotech press releases

MicroTissues, Inc.’s 3D Petri Dish™ Used in Time Magazine’s Medical Breakthrough of 2010

MicroTissues, Inc. announced today that its 3D Petri Dish™ was used in one of Time magazine’s medical breakthroughs of 2010. Researchers at Brown University and Women and Infants Hospital used the 3D Petri Dish™ to invent the first artificial human ovary, a discovery important for fertility research and a possible infertility treatment for cancer patients. In lab studies, the investigators used the 3D Petri Dish™ to assemble three different cell types into a 3D structure resembling an ovary where they functioned for all intents and purposes like a real ovary, even successfully maturing a human egg from its earliest stages in the follicle to a fully developed form.

“This is an exciting medical breakthrough and an significant validation of the importance of the 3D Petri Dish™ technology” said Brian Morgan, Marketing Manager of MicroTissues, Inc. “Cell-to-cell interactions are critical for the function of the ovary and the 3D Petri Dish™ is designed to promote these interactions. The honeycomb shaped 3D microtissue used in these studies is a great example of the kinds of complex shaped microtissues that can only be produced with the 3D Petri Dish™.”

MicroTissues, Inc offers eight products that are precision micro-molds used to cast 3D Petri Dishes™ that fit in standard multi-well plates. The micro-molds are autoclavable and reusable. The 3D Petri Dish™ is used to form 3D spheroids and microtissues with more complex shapes and geometries such as toroids and honeycombs. Over thirty different cell types, including primary human cells, have been shown to form 3D microtissues in the 3D Petri Dish™.

MicroTissues, Inc. a privately held company with an exclusive worldwide license to US and international patent applications on the 3D Petri Dish™, is advancing technologies and applications of 3D cell culture. The company’s products stand above the rest because they are designed to create more natural and more reliable 3D cell culture environments based on cell-to-cell interactions in convenient and consistent formats that generate high content information. The company’s lead line of products, the 3D Petri Dish™, is serving the needs of researchers in a wide range of areas including cancer research, stem cell biology, toxicity testing, developmental biology, drug discovery, regenerative medicine and tissue engineering. In addition to products for basic research, MicroTissues, Inc. is using its platform technology to pursue applications in drug discovery and cell therapy. For more information, please visit www.microtissues.com.

Via EPR Network
More Biotech press releases

Assay-Ready Chemistry Partnership between Enamine and Molplex

Molplex and Enamine today announced a new partnership to offer the Enamine screening collection of 1.8 million stock chemicals through the Molplex online drug design and assay-ready chemical supply services. The agreement is a major step towards eliminating the high start-up costs ofdrug discovery, bringing sophisticated drug design, compound management and assay-ready chemistry to the world’s drug discovery scientists on demand. The agreement adds Molplex online drug design systems to the deep experience in organic chemistry and compound management of Enamine to solve the problem of generating viable chemical leads for novel targets.

Molplex CEO David E. Leahy said: “We are very proud to be selected by Enamine as their partner for on demand drug discovery services at a time when major restructuring of the industry is creating new opportunities and new markets for our combined expertise. This agreement marks a step change in the size and scope of our assay-ready chemical supply service and major progress towards our goal of being the world’s first choice partner for enabling the long tail of drug discovery”

Enamine Chief Marketing and Sales Officer Dr Vladimir Ivanov said “We are happy to partner with Molplex and supply our products to the highly integrated drug discovery platform they maintain. In this collaboration we deploy all our discovery resources including the world’s biggest screening collection (1.8 million compounds), largest inventory of building blocks (45,000 products), and over 300 chemists at our Kiev’s site to assure high cost efficiency and high responsiveness to any follow up chemistry emerging from projects run through Molplex discovery platform.”

Via EPR Network
More Biotech press releases

Gene Therapy and Stem Cell Therapy Standard Developed For A Unique Derivative Of Post Hetero-Plastic Inplantation Chronic Inflammation Syndrome, The NIDO Disease

Researchers task force, led by faculties of T-Protocol, registered Genom Project as controlled genom project in the hosted database of NCBI, a publication matter authority and function assigned organization under oversee of Department of Health & Human Services, reached once to share the exegetical impression officially pre-published concerning the understanding specific spectrum of symptoms covering boroad range of character usually complained and observed through chronic inflammation, granuloma, some types of lymphoma and various uncommon symptoms to let physician scientists suspecting indicium of neurological diseases, NIDO disease, an unique type of post hetero-plastic implantation chronic inflammation syndrome and setting Massachusetts indications of treatments standardized manual (Massachusetts manual) & diagnostic and standardized medical treatment manual for post hetero-plastic inplantation chronic inflammation syndrome, specific edition against NIDO Disease.

The once defined causes of NIDO disease, an unique type of post hetero-plastic implantation chronic inflammation syndrome are considered each of a common living organism to cause conformational diseases like Creutzfeldt-Jakob disease, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and kinds of and a set of biochemical and physical reaction and response realized by cross-species gene- mutation, as biotransformation, easily describing natural physiological and biochemical changes in vivo substrate of human bodies. After this studies, standardized protocol of gene therapy and applied stem cell therapy is now in practice and on available.

Faculties,committing themselves entirely to the project, of each institutes and organizations participating the project to ascertain proteins and DNA/genomic DNA/genom of human, other mammal and virulent microorganism including bacillus/virus affecting each symptom and the symptoms’ spectrum expressed generally and observed commonly on patients suffered from NIDO disease, extraordinarily unique derived type of post hetero-plastic implantation chronic inflammation syndrome and to develop diagnostic standard and treatment protocol standardized and to find a clue compose gene therapy protocol and applied stem cell therapy protocol to entirely heal NIDO disease, an unique type of post hetero-plastic implantation chronic inflammation syndrome and to let all of current suffered patients from various combined symptoms directly derived by chronic inflammation and various tumors, have to express full surprise at the fact that these disease and patients suffered are made up and left no attention and no relief.

Via EPR Network
More Biotech press releases

Nationaly Registered T-Protocol Of Genom Project Successfully Applied To Retrieve Bio Mechanism Of Hair Regrowth

Division of Gene Medicine & Stem Cell Application, School of Medical Science, complete the research and established completely new protocol totally recovering natural bio mechanism of hair regrowth.

The researchers, led by Lord. Prof. Dr. Daichent Otto Rie, specified protein and genom to affect internal bio mechanism to generate hair and control the level of successful growth being low which is the baldness.

The key cast of the set of the bio cycle is hair follicles, which is stem cell on head skin and effect or holding function to cure many neurotic diseases and disorders like Alzheimer’s disease – Prion Disease and even Trion Disease (Post Hetero-Plastic Implantation Chronic Inflammation Syndrome; PhCIS) has absolutely unique character being retrieved absolute stem cell, which can recover the ability as stem cell after got adult. The key genom and DNA has been found through the Genom Project’s T-Protocol research developing in the government registered Genom Project since 2005. The most concentrated attention of researchers is not “what is cause” but “What protocol is best”.

The team of Prof.Daichent has successfully completed in vivo and in vivro experiment actually using voluntary patients whose types of hair loss being across over highly wide range extent to even lymphoma and cancer and finally established next genetic hair loss curing treatment protocol mainly composed of stem cell therapy and gene therapy.

Most of cases are treatable through entry level stem cell theraputic technique or HIV-1 Vector using high level technique but A20 introduction as gene therapy is required when treating patients being suffered from lymphoma, cancer or any neurotic diseases like Alzheimer’s disease – Prion Disease and even Trion Disease (Post Hetero-Plastic Implantation Chronic Inflammation Syndrome; PhCIS).

As Prof.Daichent points since 2005 being on School of Public Health of Harvard, in the treatment manual (published 2005), the key factor to overcome of lymphoma and chronic inflammation on human skin is extraordinary redundancy coding of polyglutamine DNA synthesis as the type of disease caused by pathological proteins and lack or heavy impairment of an specific DNA of A20.

Actually, the treatment protocol curing for baldness is also found through T-protocol which was essentially aimed at achieving causal and complete treatment of lymphoma, cancer, chronic inflammation and many neurotic diseases. Under control over the T-Protocol, all of clinical practitioner must always keep their eyes on the fact of using steroid is taboo over administration so being strictly prohibited. And also the technique must be under control of the competent faculty accredited by board in accordance with Europ.Gene Institute or specifically set physically area solely for research and clinical practice of nations like Switzerland, Germany, India, Hongkong, U.K. territories (NEVER inside U.K.) appointed by protocol developer and assigned practice entity.

Via EPR Network
More Biotech press releases

Drug Discovery On Demand By Molplex

An innovative new online “drug discovery on demand” platform has been launched by Molplex, a company specializing in products and services for the life sciences. Designed to help drug discovery groups working anywhere in the world, it aimsto eliminate the high start-up costs and minimize the financial risks traditionally associated with inventing new medicines.

Molplex CEO David Leahy said: “As the pharmaceutical industry changes, a new ecosystem of small, flexible teams operating as “Micro Pharmas” is emerging. Molplex will provide the services they need to succeed at inventing better medicines at lower cost”.

The first version of the new Molplex system launched today offers free access to sophisticated drug design systems, high quality assay-ready stock chemicals and high content biological screening at www.molplex.com.

Via EPR Network
More Biotech press releases

Turkey’s Biopharmaceutical Sector Attracts, Boosts Research and Development Expenditures

A recent report on the biopharmaceutical sector presence, employment, economic output and research and development activity in the European States highlights Turkey’s long-term prospects for growth. The report notes that the industry is creating a positive ripple across the region’s economy, improving the quality of life for its citizens and increasing access to medicine.

In particular, strong public-private industry collaborations and an emphasis on research and development are highlighted as aiding in the development of new medicines, improving access to medicine and increasing the economic benefits of the region. Güler Hülya Yılmaz, head of Deloitte Turkey’s Health and Drug Industry division, emphasizes the importance of research and development (R&D) in the biopharmaceutical sector. Yilmaz states, “In R&D, it’s important that there be a strong foundation for laying the bricks of innovation. Turkey has that foundation, but with this there is a need for government support of new research and partnerships between industry and academia.”

Global Health Progress (GHP) also believes proper support for research and development in the pharmaceutical industry can contribute to the Turkish economy far beyond drug development and production. For example, the Turkish biopharmaceutical market has expanded rapidly, generating approximately US $8.5 billion in revenue in 2008 and contributed thousands of high-quality, highly skilled jobs to the region. Fortunately, recent reforms and policy changes by the Turkish government have created a more favorable environment for R&D investment. For example, the Turkish government has implemented a number of Technology Development Zones, which feature exemptions from income and corporate taxes on profits derived from R&D activity, an exemption from taxes on the wages of R&D personnel employed in the zones and value added tax (VAT) exemptions, all through 2013.

Additionally, the country’s sizeable pool of patients for clinical trials can bring health benefits, diffusion of medical knowledge and greater patient access to medicine and high quality care to citizens. With a population of approximately 72 million and a growing middle class, chronic diseases represent the majority of Turkey’s disease burden. An increased focus on prevention, early intervention, new treatments, and public-private partnerships, including recent government, university and industry collaboration facilitated by the establishment of several research institutes, is critical to reducing the health and economic burden of disease in Turkey.

Via EPR Network
More Biotech press releases

The Porcine microRNAome is Revealed

Researchers from LC Sciences LLC and a collaboration of Universities1 have established a porcine microRNAome, a complete catalog of all microRNAs expressed in the species Sus scrofa2. MicroRNAs (miRNAs) are small regulatory RNA molecules known to control a wide array of cellular functions such as growth and development and whose dysregulation has been associated with disease. The findings of this study lay the groundwork for a greater understanding of the species through further mapping of tissue- and stage-specific miRNAs.

The domestic pig is an important species from various standpoints. First, it is a major protein source in the human diet world-wide. Additionally, its anatomy, physiology, and genome size are very similar to the human species, and there has been increasing molecular genetic evidence showing the comparability of human and pig, making it a suitable model system for human biology. Pigs are now model animals for biomedical research of cardiovascular, immunological, cancer, diabetes, and a range of other diseases. Finally, the pig has become an important source of organs and tissue for transplantation into humans.

Prior to this study, miRbase3, the primary public repository for miRNA sequence data, listed only 73 unique pig miRNAs, this out of a total of 10,883 database entries encompassing over 100 species. The number of miRNAs for pig was significantly lower than for other species with similar size genomes (such as Human with 894 miRNAs) suggesting the existence of far more pig miRNAs.

The researchers used advanced deep sequencing and developed bioinformatics technologies to analyze all the small RNA molecules that are transcribed from all the genes in the pig genome. After filtering, mapping, alignment and classification of all the reads, they had shown that the pig miRNAome has 777 unique miRNA sequences. The sequencing results will not only greatly enhance the utility of the pig microRNAome as the blueprint of advanced pathway network studies of miRNA and their target mRNAs, but also provide information on time-dependent variations of the microRNAome as to sequence lengths, counts, composition, genomic location, and the relative expression of conserved versus pig-specific miRNAs.

Via EPR Network
More Biotech press releases

Cryo-Cell CEO Mercedes Walton Invites Women to Share Their Ideas on Self-Care and the Power of Stem Cells

Cryo-Cell International, Inc. a global leader in stem cell innovation, resolves to help women inspire and empower each other to take charge of their health in the New Year, and to spark conversations about the promise of stem cells.  The company will be accepting video entries for its “Resolution Revolution” contest through January 31, 2010, and details on the event can be found at www.celle.com/resolution.

“This time of year, we often make New Year’s resolutions to take better care of ourselves, but the dawn of a new decade is particularly poignant as we look ahead with hope and inspiration at the steps we can take,” said Mercedes Walton, CEO of Cryo-Cell International.  “Never in history have we experienced a time of such rapid advances with stem cells, including the use of menstrual blood stem cells and how they may help women protect their health” she added.  “Because women often look to each other for information and inspiration, we’re looking to empower them to spread the word through video about what the power of stem cells means to them.”

The C’elle service is the first and only one of its kind, empowering women to collect and cryo preserve stem cells from their menstrual flow.

Stem cells from menstrual blood are proven to be a rich source of stem cells which proliferate rapidly and have the ability to become many different types of cells such as cardiac, neural, bone, fat and cartilage.

These stem cells are a potential source for promising regenerative therapies to treat stroke, cardiac, diabetes, breast cancer, spinal cord injury, chronic wounds, Alzheimer’s and other debilitating diseases.

Since launching its proprietary service, the company continues to expand research and development initiatives worldwide in order to accelerate the potential diagnostic and therapeutic benefits of these unique stem cells. Cryo-Cell partnered with the National Institutes of Health (NIH) Clinical Center, where research is underway to better understand the C’elle stem cells and their potential benefit for the treatment of breast cancer.  It also has entered research and licensing agreements with several other organizations to identify potential future diagnostic and therapeutic uses for endometriosis and stress urinary incontinence in women and regenerative medicine specific to wound healing. In 2009, the service was licensed in China, Thailand and Brazil.

Via EPR Network
More Biotech press releases