Cryo-Cell CEO Mercedes Walton Invites Women to Share Their Ideas on Self-Care and the Power of Stem Cells

Cryo-Cell International, Inc. a global leader in stem cell innovation, resolves to help women inspire and empower each other to take charge of their health in the New Year, and to spark conversations about the promise of stem cells.  The company will be accepting video entries for its “Resolution Revolution” contest through January 31, 2010, and details on the event can be found at

“This time of year, we often make New Year’s resolutions to take better care of ourselves, but the dawn of a new decade is particularly poignant as we look ahead with hope and inspiration at the steps we can take,” said Mercedes Walton, CEO of Cryo-Cell International.  “Never in history have we experienced a time of such rapid advances with stem cells, including the use of menstrual blood stem cells and how they may help women protect their health” she added.  “Because women often look to each other for information and inspiration, we’re looking to empower them to spread the word through video about what the power of stem cells means to them.”

The C’elle service is the first and only one of its kind, empowering women to collect and cryo preserve stem cells from their menstrual flow.

Stem cells from menstrual blood are proven to be a rich source of stem cells which proliferate rapidly and have the ability to become many different types of cells such as cardiac, neural, bone, fat and cartilage.

These stem cells are a potential source for promising regenerative therapies to treat stroke, cardiac, diabetes, breast cancer, spinal cord injury, chronic wounds, Alzheimer’s and other debilitating diseases.

Since launching its proprietary service, the company continues to expand research and development initiatives worldwide in order to accelerate the potential diagnostic and therapeutic benefits of these unique stem cells. Cryo-Cell partnered with the National Institutes of Health (NIH) Clinical Center, where research is underway to better understand the C’elle stem cells and their potential benefit for the treatment of breast cancer.  It also has entered research and licensing agreements with several other organizations to identify potential future diagnostic and therapeutic uses for endometriosis and stress urinary incontinence in women and regenerative medicine specific to wound healing. In 2009, the service was licensed in China, Thailand and Brazil.

Via EPR Network
More Biotech press releases

Cord Blood: Saving For The Future

For an expectant mother, there are a million details to worry about and a lot of important decisions to be made.

Cord Blood: Saving For The Future

One of those decisions to be made is whether to bank your baby’s umbilical cord blood. Cord blood is valuable because it’s full of stem cells scientists and doctors can use in research and regenerative medicine.

Cord blood stem cells are the ones that are obtained from the newborn. They’re closest in age to being an embryonic stem cell without being an embryonic stem cell,” said David Harris, PhD with Cord Blood Registry.

When they’re stored properly in a bank, like one in Arizona, the stem cells can be used to replace other cells in our bodies that may be damaged or missing due to disease. But, you only have one chance to harvest them.

“At the time of delivery, before the placenta is delivered, we have a little bag with a needle and a tube, like an IV tubing, and we actually draw the blood out of the placenta into a prepared bag and that’s what you send in to the cord blood banking people,” said Dr. Lynn Frame.

But, Dr. Frame says very few of his patients actually do it because of the cost.

Most private cord blood banks charge more than $1,000 up front. Then, for every year you store the blood in one of their cryogenic tanks, it costs about $100. For 18 years of storage, it can add up to about $3,000.

Via EPR Network
More Biotech press releases

Scientist Uses Stem Cells To Repair Heart

Dr. Joshua Hare believes medicine is close to a goal long thought to be impossible: healing the human heart.

The way to get there? Stem cells.

“These could be as big as antibiotics were in the last century,” said Hare, who leads the University of Miami ‘s new Stem Cell Institute. “Stem cells have the potential to have that kind of impact. Diseases like heart attacks, strokes, kidney failure, liver failure — we will be able to transition them into things you live with.”

Hare spends his days peering through powerful microscopes, recruiting scientists from top universities and attending to patients betting on improving their conditions through his clinical trials.

Stem cells, only one-thousandth the size of a grain of sand, are the master cells of the body, the source from which all other cells are created.

The most basic are embryonic stem cells, which are “totipotent,” meaning they can divide into any other type of cell — heart tissue, brain tissue, kidney tissue — all 220 cells that exist in the human body. They’re controversial because when they are harvested, the embryo is destroyed, ending potential life.

But coming into view are new kinds of stem cells — immature adult stem cells that can be extracted from bone marrow, from organs such as the heart or kidney or even from the skin. These can be taken without destroying embryos.

While researchers until recently believed adult stem cells were limited because they could develop only into cells similar to them — bone marrow cells only into cord blood stem cells, for example — evidence is growing that they, too, may become the tissue for hearts, brains, kidneys and other organs.

Via EPR Network
More Biotech press releases

Will Intra-Osseous Injection of Umbilical Cord Blood Reduce Graft Failures?

Researchers from Italy have reported that the injection of umbilical cord blood directly into the pelvic bones of patients with leukemia appears promising. These results were recently published in an early online publication of the Lancet Oncology on August 9, 2008.

Transplantation of bone marrow, peripheral blood stem cells, and umbilical cord blood is accomplished by intravenous infusion. The original studies of human bone marrow transplantation were carried out by direct infusion into bone marrow spaces. However, this approach was abandoned as there was no advantage in speed or rate of engraftment over intravenous infusion. Since these early days of transplantation, there have been sporadic attempts to evaluate intra-osseous infusion of stem cells, but no advantage over intravenous infusion was ever found. The reason for this is thought to be that direct infusion of stem cells into the marrow cavity is in fact identical to intra-arterial or intra-venous infusion, and most stem cells enter the general circulation before homing into marrow spaces throughout the body.

Umbilical cord blood transplantation is associated with relatively high graft failure rates thought to be due to the relatively low dose of stem cells in each collection. Researchers have suggested that the infusion of stem cells from two separate cord blood collections alleviates the graft failure problem. However, Italian researches have posed the question of whether or not intra-osseous infusion would be better.

The current trial evaluated direct infusion of umbilical cord blood into the pelvic bones. This trial included 32 patients with acute myeloid leukemia (AML) and 12 with acute lymphoblastic leukemia (ALL); median age was 36 years. Overall, 14 patients had advanced-stage disease that did not respond to standard therapies, and no patient had a suitable donor for the stem cell transplant.

Via EPR Network
More Biotech press releases

Now, Women Can Bank On ‘Monthly Miracle’ For Future Treatment

Women in the city will soon have the option of banking their menstrual blood so that menstrual blood stem cells can be used for treatment of serious disorders through stem cell therapy.

In six months, Life Cell International, in technology partnership with Cryo-Cell International, will set up the facility, which will be the first to store menstrual blood in the country.

Cryo-Cell, which has patented technology to decontaminate samples, started menstrual blood banks in the US last year, and other countries are yet to catch up. Cryo-Cell calls it ‘your monthly miracle’. The endometrium-lining of the uterus regenerates every month, suggesting the presence of stem cells. However, there is no published scientific work on the curative properties of such cells.

Stem cells have the ability to regenerate themselves through cell division and act as a repair system for the body. Research on stem cells provides knowledge about how healthy cells replace damaged ones in adults, leading to the possibility of cell-based therapy to treat diseases.

“Menstrual blood contains millions of stem cells that have many properties and characteristics similar to those of stem cells found in bone marrow and embryos. These stem cells exhibit capabilities for self-renewal and multi-potency,” says LifeCell International executive director Mayur Abhaya. Stem cell research hopes to find answers to problems such as cardiac and degenerative diseases, besides cancer.

The women would be given a collection kit comprising a menstrual cup and collection tubes. The blood would be processed and preserved in liquid nitrogen at extremely low temperatures.

Though the Chennai bank has not decided on the rates, it hopes registration will cost less than that charged for preserving cord blood. At present, the bank, which has stored over 13,000 samples of cord blood at a facility near Chennai, charges Rs 41,100 for collection, processing and storage of the blood for the first year. From the second, the client pays an annual fee of Rs 3,500 to preserve the blood for two decades.

The biggest advantage of menstrual blood, according to LifeCell chief scientific officer Dr Ajit Kumar, is that it can be easily harvested in a painless, non-invasive manner. “And it also extends the scope of stem cell therapy to a larger section of the people. Cord blood is an option open to only those who are pregnant or those planning babies,” he says.

At a time when legal restrictions on collection of embryonic stem cells have been stymieing research, the option to save menstrual blood is a boon because these cells have similar properties to that of cord blood, he adds.

Via EPR Network
More Biotech press releases

New Transplant Therapy, Shift in Drug Discovery

On August 23-25, 2010, industry scientists, CEOs, and academics will convene at Philadelphia’s Four Seasons Hotel for the “Ubiquitin Drug Discovery and Diagnostics Conference” to discuss the Next Big Thing in drug discovery research—the ubiquitin pathway. Advances in oncology, infectious diseases, neurodegeneration, inflammation, diabetes, and muscle wasting will be covered.

New Transplant Therapy, Shift in Drug Discovery

A pathway is a sequence of reactions converting one molecule into another. Ubiquitin, which is a small protein, is used often to mark larger proteins within a cell for breakdown. This pathway plays fundamental roles in human health and disease; many human pathologies have been linked to changes in ubiquitin pathway enzymes. Attracting experts in this growing field, the three-day conference is unique in its focus on drug discovery within the ubiquitin pathway.

Rejection hurts; but for the recipient of organ donation, rejection can be fatal. New combination therapies for treating antibody-mediated rejection (AMR) in transplant patients are possible, thanks in part to manipulation of the ubiquitin pathway.

When a transplant recipient’s body rejects donor tissue, the recipient’s plasma cells, which typically fight off infection, are in fact the aggressors in the attack. Dr. Woodle suggests stalling the proteasome (or “cellular waste-bin”) via the ubiquitin pathway (or “cellular tagging and shipping information hub”) thereby depleting plasma cells and treating rejection. Dr. Woodle will present his latest findings during the final conference session.

Via EPR Network
More Biotech press releases